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A simple model is presented to explain the observed generation of a quasi-steady
vortex at the leading edge of an animal wing that rotates in a horizontal plane about
a body-centred axis. Vorticity formed by separation at the leading edge is transported
outwards by a spanwise velocity field generated by two sources of spanwise pressure
gradient, one induced centrifugally and the other by variations in the vortex size and
circulation. The vorticity is then deposited into a trailing vortex system that takes
the form of a downward propagating vortex ring. This mechanism appears to apply
generally to flying animals but is modelled here for those in hovering flight.

1. Introduction
In Maxworthy (1979, 1981) it was proposed that, in hovering flight, during the

forward stroke of the wings at an angle of attack, a quasi-steady leading-edge vortex
with a strong axial flow component was formed that substantially modified the
airflow over the wing and the forces acting upon it. Since that time a number of other
authors have performed experiments that confirm and enlarge upon this observation
(e.g. Ellington et al. 1996; van den Berg & Ellington 1997; Birch, Dickson & Dickinson
2004). From all these observations, and others, it was clear that as the wing moved
forward the flow separated from the sharp leading edge, generating vorticity that was
transported spanwise along the leading-edge vortex and eventually deposited into a
wing-tip vortex and thus removed from the neighbourhood of the wing, leaving a
quasi-steady vortex at the leading edge. This is in contradiction to the dynamical
processes that occur in flow over a two-dimensional wing in which the vorticity is
removed locally by unsteady vortex shedding, as in the classical von Kármán vortex
street. The closest analogous system to the present one is that which occurs over a
delta wing at angle of attack. In that case the axial flow in the conical vortex, which
is needed to stabilize it, is generated by the component of the approach flow that
is in the same direction as the swept leading edge. For the insect wing this not the
case and so one needs a different mechanism to generate the axial flow. Previously
(e.g. Maxworthy 1981) it has been noted that this mechanism must be related to the
centrifugal forces generated by the rotation of the wing about its point of attachment
at the insect body, but this has never been quantified, as far as this author is aware.
Here an attempt is made to correct this situation and present a simple model that
can explain how the axial flow can be set-up and maintained by both the centrifugal
force, as outlined above, and the variation in vortex properties with distance from
the rotation axis. Both of the vortex types mentioned above are of a class, which also
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Figure 1. Sketch of rotating, triangular wing with attached leading-edge vortex (LEV).

includes tornado-like flows, commonly called Batchelor vortices (Batchelor 1964) in
which the axial vorticity and axial velocity occupy the same region in space. Thus
once, as here, the location of the axial vorticity is prescribed, the location of the axial
velocity must be the same.

2. A dyamical model of the leading-edge vortex on a wing rotating about a
fixed vertical axis

In figure 1 the essence of the model is sketched. For simplicity a slender conical
flow field is assumed with a wing, of triangular planform, rotating about a centre
located at the insect body. The slenderness assumption allows one to make a locally
cylindrical approximation to the flow field and greatly simplifies the analysis. The
wing has a semi-span, T , and moves at an angle of attack, α, to the direction of wing
motion. The wing tip moves with a velocity VT so that at a radial position, R, the
local velocity of the leading edge, V , is simply VT R/T . The vortex grows as vorticity,
generated at the leading edge by separation, both accumulates and is transported
along the wing, so that finally a quasi-steady state is achieved with a conical vortex,
as shown in the figure. At the arbitrary location, R, the vortex has an outer radius, ro,
while the outer radius at the wing tip is rT o, so that ro = rT oR/T . Within the vortex,
along cones with apexes at the centre of rotation, r/ro = rT /rT o. As described later
a velocity, U , is induced along the vortex which removes vorticity from where it is
generated to the wing-tip and into a trailing vortex ring, which, for simplicity, is not
shown on the figure. A continuity argument suggests that the flow velocity around the
outer edge of the vortex must be of the same order as, but not equal to, V , the local
leading-edge translational velocity, everywhere, in particular being order VT at the
wing-tip. A further assumption is needed, namely that the vorticity within the vortex,
ω, is uniform everywhere with a value 2V/r =2VT /rT , as shown in figure 1. It is a
straightforward matter to consider other vorticity distributions but this complicates
the simple argument put forth here and adds no substantial, new understanding.
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The assumption that the velocity at the edge of the core is of order V leads to
the result that the pressure there must be of the order of the upstream atmospheric
pressure, pa . Clearly both assumptions are considerable simplifications of the true
state since both must vary around the core in a non-trivial manner, see e.g. Pullin
(1978). However, using these assumptions in trying to generate the simplest possible
model that has the basic mechanisms correctly identified leads one to estimate the
pressure distribution within the core, p(r), to be
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where ρ is the air density.
From a dynamical point of view the important quantity that generates an axial

flow is the pressure gradient:

dp/dR = −ρV 2
T R

(
1 −

[
r2
T /r2

T o

])
/T 2.

Thus the pressure along the core varies is such a way as to induce an axial velocity,
U , in the direction shown in the figure. Before this velocity can be estimated we note
that there is another pressure gradient force acting on the vortex. The whole vortex
is rotating around the centre shown on the figure. This in turn induces a pressure
gradient to balance the centrifugal force acting on all the particles of the vortex that
rotate with the wing. This pressure gradient can be estimated to be

dp/dR = −ρV 2/R = −ρV 2
T R/T 2.

It acts over the whole of the vortex cross-section. Thus the total pressure gradient
acting along the vortex is

dp/dR = −ρV 2
T R/T 2

[
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])]
.

Assuming a balance between the pressure gradient and the axial, i.e. spanwise, inertia
force, U∂U/∂R = O(U 2/R), in the core, the velocity U is then given approximately
by solving

U 2/R =
∣
∣−V 2

T R/T 2
[
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so that

U = VT R/T
[
1 +

(
1 −

[
r2
T /r2

T o

])]1/2
.

The radial distribution function in the outer square brackets is shown in figure 2.
One further result which is of interest concerns the swirl angle of the streamlines

since this is intimately related to the criticality of the flow and its ability to generate
a vortex breakdown, see e.g. Benjamin (1962). Defining the swirl angle, σ , as that
between the local direction of a streamline and the axial direction and using the result
that, by assumption, V = [VT R/T ]rT /rT o one obtains

σ = arctan
[
rT /rT o

]
/
[
1 + (1 −

[
r2
T /r2

T o

])]1/2
.

Thus σ varies from zero at r/ro = rT /rT o = 0 to 45o at r/ro = rT /rT o =1. Fortuitously,
in the paper by Birch et al. (2004), photographs of the streamlines are shown in
which the central streamline is essentially straight, i.e. follows the curve of the leading
edge so that σ =0o, and the outer streamline has swirl angles angles that vary from
about 40◦ to 60◦, values which encompass our estimate. These values, as well as the
present estimate, are in the range where one would expect a vortex breakdown to be
generated. Sarpkaya (1971) gives the critical swirl angle just ahead of a bubble type of
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Figure 2. Axial velocity function in the vortex core versus radius.

breakdown as 50◦, essentially independent of Reynolds number. There is a suggestion
of such a structure in Birch et al.’s (2004) figure 7, the second and third photographs
of sequence D, where the Sarpkaya (1971) critical angle is closely approximated just
ahead of the observed vortex breakdown-like structure.

3. Discussion and conclusions
The very simple model presented above shows that the flow generated by a wing

rotating about a fixed centre is capable of generating both a rolled-up vortex sheet
and a concomitant outward flow along the vortex central axis. The present argument
for the latter is partially based on a core that rotates as a solid body around this
spanwise axis. While this is certainly the simplest model it is clear that any vorticity
distribution that results in a velocity distribution that decreases from a maximum near
its outer edge to zero at the centre and increases in size and magnitude, more-or-less
conically, will give a similar result. On the other hand the pressure gradient within
the particles in any fluid volume that rotates about a centre will of necessity be of a
sign to give an outward axial velocity no matter what its state of internal rotation,
as in the boundary layer flow over a rotating disk, for example. Thus these two
effects give a flow field that generates vorticity at the leading edge and then removes
it spanwise to be deposited into a trailing vortex which, as shown in Maxworthy
(1979), results in the formation a downward propagating vortex ring that contains the
impulse generated by the forces acting on the wing. The present estimate of vortex
circulation is the same as that given in Maxworthy (1979) so that the force estimates
given there apply to the present case as well.

As discussed in the Introduction the mechanism presented here gives a flow field
that is similar to the steady vortex over a delta wing at angle of attack. However, in
that case the axial flow is generated by the component of the approach velocity in the
direction of the swept leading edge. As demonstrated in van den Berg & Ellington
(1997), the flow fields in the two cases are virtually identical.
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While the model presented here was formulated for a wing moving in a horizontal
plane at an angle of attack, as in figure 1, the same mechanisms are at play when
the animal is moving forward and the wings are beating in a plane that is vertical or
near-vertical. There the animal probably adjusts its angle of attack with respect to the
oncoming flow so that the flow still separates at the leading edge and, as here, there
is a variation in vortex properties from wing root to tip as well as general spanwise
pressure gradient due to wing rotation.
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